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1. INTRODUCTION AND PRELIMINARIES

Let M be a nonempty closed subset of a Banach space X Then an
element m in M is called a strongly unique best approximation of order q ~ 1
to an element x in X, if there exists a constant c = CM(X) > 0 such that

(1.1 )

for all y in M. Clearly, a strongly unique best approximation m of order q
is the unique best approximation in M to the element x. In recent papers
[7,11-14] we have shown that the converse statement is also true for any
sun M (in particular, for any convex subset M) of Lebesgue spaces L p ,

Sobolev spaces Wk,p, Hardy spaces HP, Lq(Lp)-spaces, and some other
spaces, where 1 < P < 00, k ~ 0, and q = max(2, p). Moreover, for all these
spaces there exists a constant Cp > °such that CM(X) ~ Cp for all elements x
and suns M. The same result is also true [13] when X is a super-reflexive
space with a properly chosen norm equivalent to the original norm in X

In this paper we shall study the existence of strongly unique best
approximations of order 2 in the Banach space X = C(T) of all real-valued,
or complex-valued, continuous functions defined on a compact Hausdorff
space T endowed with the uniform norm. Note that if an element m is a
strongly unique best approximation (i.e., a strongly unique best
approximation of order 1) in M to an element x E X, then by (1.1) and the
triangle inequality for the norm we have

Ilx- YIl2_llx_mI1 2= (1Ix- yll-llx-mll)(llx- yll + lim-xii)

~c Ilm- Y112.

This means that the element m is also a strongly unique best
approximation of order 2 to the element x with the same positive constant
C = CM(X). Therefore, we shall restrict our investigations of strong unicity of
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order 2 to subsets M of C( T) such that strong unicity fails for some
elements x in C(T).

It should be remarked that strong unicity of order 2 is very useful to
prove a Holder continuity of metric projections and to establish a rate of
convergence of numerical algorithms for computing best approximations.
Indeed, let EM be the set of aU elements x E X having a best approximation
m in M, i.e., such that

Ilx-mll =dist(x, M):= inf Ilx- yll.
YEM

Denote by PM the metric projection of EM into (9J1, p) defined by

PMX = {the set of aU best approximations in M to x},

(1.2)

where (9J1, p) is the metric space of aU nonempty closed bounded subsets of
M with the Hausdorff metric

p( U, V) = max {sup dist(u, V), sup dist(v, U)}; U, V E 9J1.
UEU VEV

Moreover, let SUM be the set of aU elements x E X having a strongly
unique best approximation m of order 2 in M, Le., such that

(1.3)

for aU y E M, where c = cM(X) is a positive constant independent of y.
Clearly, we have EM:::> SUM:::> M.

THEOREM 1.1. If x E SUM and 0 E M, then the metric projection PM
satisfies the local Holder condition

for all z E EM such that Ilzll ~ K, where K is an arbitrary positive constant
and the constant d is equal to

Proof Let m = PM X and u E PM z. Then using (1.2), (1.3), the triangle
inequality for the norm, and the fact that 0 E M we obtain

cM(x) Ilm-uI12~ Ilx-uI12-llx-mI12~2(llx-ull + Ilx-mll) Ilx-zll

~ 4(K + Ilxll) Ilx - zll·

Taking the supremum over u of the left-hand side we finish the proof. I
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Now suppose that a numerical algorithm produces a sequence {m k } in
M such that

as k -+ 00.

Then the additional assumption that x ESUM enables us to insert y = mk
into inequality (1.3) and get

THEOREM 1.2. The sequence {md converges to m = PMX and the
estimate

11m -mk11 2 ~ (ek - e)/cM(x)

holds for all k.

2. LINEAR COMPLEX ApPROXIMAnON

Throughout this section we assume that M is an n-dimensional subspace
of the complex Banach space C(T), where T is a compact Hausdorff space
which consists at least n + 1 distinct points. By local compactness of M we
have EM= C(T). It is well known [9, Theorem 6.2] that an element m is a
best approximation in M to x E C(T) if and only if there exist points (t)}
(1 ~ k ~ 2n + 1) in the set

ext(x - m) = {t E T: Ix(t) - m(t)1 = Ilx- mil}

and real positive numbers (ctj )} such that L:Y~ 1 ctj = 1 and

k

L ctix(tj ) - m(tj)) y(t) = 0
j~ 1

for allyE M. (2.1 )

Additionally, if M is a Haar subspace (i.e., if an element y E M\ {O} has at
most n - 1 zeroes in T) then we have k): n + 1 [9, Theorem 6.3]. In this
case we immediately conclude that the function

YEM, (2.2)

is a norm on M. Since all norms on a finite dimensional space are
equivalent [2, Corollary 3, p. 245J, it follows that there exists a constant
c=cM(x»O such that

(2.3 )
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for all y E M, where M is a Haar subspace of C(T), Now we establish an
interesting theorem which is given in [10, Theorem 2.4.5]. A proof of this
theorem is presented, since it is much simpler than the original proof.
Moreover, the strong unicity constant c = cM(X) given below is better than
the constant obtained in [10].

THEOREM 2.1. Let m be a best approximation in a Haar subspace M of
C( T) to an element x E C( T). Then the inequality

holds for all y E M, where the positive constant c = cM(X) is defined as in
(2.3 ).

Proof Let IXj and tj be as in (2.1). Since

Ilx- yl12 ~ I(x-m)(t) + (m - y)(tjW = ilx-ml1 2+ I(m - y)(tjW

+2 Re[(x-m)(t)(m- y)(tJ]

for allj and y E M, we can multiply the obtained inequalities by IXj , sum up
them over j, and use (2.1 )-(2.3) and the fact that L lij = 1 to complete the
proof. I

By this theorem and Theorem 1.1 we immediately get

COROLLARY 2.1. Let x be a function in C(T), and let the positive
constant c = cM(X) be as in (2.3). Then the metric projection PM of C( T)
onto a Haar subspace M of C(T) satisfies the local Holder condition

liPMX - PMzll ~ d Ilx - zlll/2

for all z E C( T) such that Ilzll ~ K, where K is an arbitrary positive constant
and the constant d is equal to

d=2[(K+ Ilxll)jc]I/2.

Further, Theorems 2.1 and 1.2 point out that any numerical algorithm
for computing best approximations in a Haar subspace M of the complex
Banach space C(T) should minimize on M the convex functional

f(y):= Ilx- yl12=max Ix(t)- y(tW
IE T

instead of the functional g(y)= Ilx- yll, yEM. This is very favourable,
since f(y) can be computed with smaller computational effort than g(y).
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3. MONOTONE ApPROXIMATION

For given integers 1~kl<k2< ... <kp~n (p~1) and signs Cj= ±1
(j = 1, ..., p), we denote by M p the positive convex cone in the real Banach
space C[a, b], with the uniform norm 11·11, defined by

M p= {y E 1!n: Cj y(kjl(t) ~ 0 for a ~ t ~ band j = 1, ..., p}, (3.1)

where 1!n is the subspace of all real algebraic polynomials in C[a, b] of
degree n or less. Now, let x be a function in C[a, b]. Denote by m a best
approximation in M p to x. Such an approximation exists and is unique (see
[5,6]). By a theorem of G. G. Lorentz and K. L. Zeller [5, Theorem 1]
the polynomial mE M p is a best approximation in M p to the function
x E C[a, b] if and only if there exist at most n +2 points t i (i = 1, ..., l) and
Sjl' (j = 1, ..., P; fl = 1, ..., rj ) in [a, b] and numbers ai > 0 and Pjl' > 0 which
satisfy

l(x-m)(tJI = Ilx-mll

and

and for all i, j, fl, (3.2)

I p rj

L ai(J(tJ y(ti) + L Cj L Pjl' y(kj)(Sjl') = 0
i~1 j~1 I'~I

(3.3)

for all yE1!n' where (J(tJ=sgn(x-m)(t;). In particular, by (3.3) we have

I

L ai(J(tJ y(ti) = 0
i~ 1

for every y E 1!k l _ I. This in conjunction with the fact that 1!k l _ 1 is a Haar
subspace of dimension k 1 implies that I ~ k 1 + 1 (see [9, Theorem 6.3]).
Therefore, one can assume that

(3.4)

Define the seminorm

on 1!n, where

A= max [n·.·(n-kj +1)]2[2/(b-a)]kj.
1 ";'j,,;,p

(3.5)

(3.6)
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Izl~ ~ c1 Ilzf

for all z in the set Z:= {a(m- y): a~O, YEMp }.

Proof If there exists a polynomial z = am - ay E Z\{O } such that
Izlm = 0, then it follows from (3.2), (3.5), and Formula (1.7) in G. G.
Lorentz and K. L. Zeller [5] that the Birkhoff interpolation problem

y(tJ = am(tJ

ikj)(sill) = 0

i kj + l)(sill) = 0

(i = 1, ..., I),

(j= 1, ..., p; 11= 1, , ri ),

(a <sill < b;j= 1, , P; 11= 1, ..., ri )

has two different solutions y = am and y = ay, which is impossible by
Lemma 2.2 of R. A. Lorentz [6] or D. Schmidt [8]. Therefore, we have
Izi m # 0 for all z# 0 in Z. Since the nonempty set

S(Z)= {ZEZ: Ilzll = I}

is compact, it follows that

Hence we get

c1 := inf Izl~>O.
ZES(Z)

(3.7)

for all z # 0 in Z. I
Now we show that strong unicity of order 2 of best approximations in

M p follows easily from the theorem of G. G. Lorentz and K. L. Zeller and
Lemma 3.1.

THEOREM 3,1. Let m denote a best approximation in M p to a function
x E C[a, b]. Then there exists a constant c > 0 such that

(3.8)

for all y E M p •

Proof Let y be a polynomial in M p • If Ilm- yll ~41Ix-mll, then by
the triangle inequality for the norm we obtain

Ilx- yI12-llx-mI12~(llx-mll-lIm-Yllf-llx-mI1 2

= Ilm- yll (1Im- YII-21Ix-mll)~! Ilm- Y112.

640/56/3-6



312 RYSZARD SMARZEWSKI

Otherwise, in view of Markoff's inequality [1, pp. 91, 94], we have

max I(m- y)(kj)(si/JI ~ll.llm- yll <41l.IIx-mll, (3.9)
J,1l

where Il. is as in (3.6). On the other hand, if we multiply the inequalities

by rJ.i , sum up them over j, and use (3.1 )-(3.4) then we get

I

Ilx- y112~ Ilx-mI1 2+ L rJ. i I(m- y)(tJI 2

i=1

p rj

+2 L L Pill Ilx-mlll(m- y)(kj)(sill)l.
i= 1 1l=1

This in conjunction with (3.5) and (3.9) implies that

Hence one can apply Lemma 3.1 to derive inequality (3.8) with the positive
constant c = CI defined as in (3.7). Consequently, the constant
c=ming, cd independent of the y's is admissible in (3.8). I

Theorem 3.1 is essentially due to D. Schmidt [8] and B. L. Chalmers
and G. D. Taylor [3], who proved that, for every s> 0, there exists a
constant c>°such that the inequality

Ilx-mll ~ Ilx- yll-c Ilm- yl12

holds for all y E M p with 11m - yll ~ s. Indeed, one can show that this
inequality is equivalent to inequality (3.8). The following corollary follows
directly from Theorems 1.1 and 3.1.

COROLLARY 3.1. Let x be a function in C[a, b], and let the positive
constant c be defined as in Theorem 3.1. Then the metric projection
P: C[a, b] --+ M p satisfies the local Holder condition

IIPx - Pzll ~ d Ilx - zlll/2

for all z E C[a, b] such that Ilzll ~ K, where K is an arbitrary positive
constant and the constant d is equal to

d=2[(K+ Ilxll)/C]I/2.

It should be noticed that this corollary was proved by D. Schmidt
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[8, Theorem 4.2] under the additional assumption deg Px ~ kp • Moreover,
an immediate consequence of Corollary 3.1 is the continuity of the metric
projection P at each point x E C[a, b] with respect to the uniform topology
in C[a, b], which was proved in [8, Theorem 4.1].

4. COMPLEX ApPROXIMATION WITH HERMITE INTERPOLATORY CONSTRAINTS

A detailed study of real approximation with Hermite interpolatory
constraints was done by H. L. Loeb et aT. [4]. In this section we consider
approximation of this kind in the Banach space C(T) of all complex-valued
continuous functions defined on a compact subset T of the complex plane.
We shall assume below that T consists of at least n + 1 distinct points. Let
nn=nn(T) denote the (n+ I)-dimensional subspace of all complex-valued
algebraic polynomials on T of degree n or less. Moreover, let
S= {Sj, ..., sp} be a nonempty subset of fixed points in T, let (nj)f be a
given sequence of positive integers with

r: = n j + nz + ... + np :( n,

and let (a Vj ), 1 :(v:(p and 1 :(j:(n v -1, be a given array of complex
numbers. If x is a function in C( T), then we define the convex subset M[x]
of C(T) by

where avo = x(sJ for all v. Clearly, a best approximation m in M[x] to x
exists.

THEOREM 4.1. Let m be a best approximation in M[x] to XE C(T). Then
there exists a constant c> 0 such that

for all y E M[x].

Proof It is clear that 0 is a best approximation in the (n + 1 - r)­
dimensional subspace M:= M[x] -m of nn to the function x-m.
Therefore, by (2.1) there exist positive numbers ()(I'''''()(k (L()(v=l,
l:(k:( 2(n + 1- r) + 1) and points t l , ..., t k in ext(x-m) c T\S such that

k

I ()(/x-m)(tj ) (y-m)(t)=O
j~1
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for all y E M[x]. Hence, as in the proof of Theorem 2.1, we get

for all y E M[x], where

ZEM.

Note that a polynomial y - m has at most n - r zeroes in T\S. Thus M is a
Haar subspace on T\S of dimension n + 1 - r. This in conjunction with the
fact that tj E T\S enables us to apply Theorem 6.3 from [9] in order to
show that k;:;:, n + 2 - r. Consequently, the seminorm 1·1 m is a norm on M.
Hence there exists a constant c > 0 such that Izi ~ ;:;:, c IIzl1 2 for all z = y - m
in M, which completes the proof. I

Finally, Theorems 1.1 and 4.1 yield

COROLLARY 4.1. Let x be a function in C( T), and let c > 0 be defined as
in Theorem 4.1. Then the metric projection P: C( T) ~ M[ x] satisfies the
local HOlder condition

p(Px, pz) ~ d Ilx - zlll/2

for all zE C(T) such that Ilzll ~ K, where K is an arbitrary positive constant
and the constant d is defined as in Corollary 3.1.

The Hausdorff metric p(Px, pz) in the corollary can be replaced by
IIPx - Pzll only if pz is a one-element set. In particular, by Theorem 4.1
this is possible when M[x] = M[z], i.e., when x(s;) = z(sJ for i = 1, ..., p.
In general this is false even in the case of approximation by real algebraic
polynomials with Lagrange interpolatory constraints. For example, let
x(t)= ItI (-1 ~ t~ 1), and let M[x] c C[ -1,1] be defined by

M[x] = {y E n 1 : y(O) =x(O)}.

Then we have pz = {o:t: -1 ~ 0: ~ 1} for z(t) = l-Itl.
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