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1. INTRODUCTION AND PRELIMINARIES

Let M be a nonempty closed subset of a Banach space X. Then an
element m in M is called a strongly unique best approximation of order g=> 1
to an element x in X, if there exists a constant ¢ = c¢,,(x) >0 such that

lx—ml?<x—yl?—clm—y|* (L1)

for all y in M. Clearly, a strongly unique best approximation m of order ¢
is the unique best approximation in M to the element x. In recent papers
[7, 11-14] we have shown that the converse statement is also true for any
sun M (in particular, for any convex subset M) of Lebesgue spaces L,
Sobolev spaces W*?, Hardy spaces H”, L,(L,)-spaces, and some other
spaces, where 1 < p < o0, k>0, and g =max(2, p). Moreover, for all these
spaces there exists a constant ¢, >0 such that c¢,(x) > ¢, for all elements x
and suns M. The same result is also true [13] when X is a super-reflexive
space with a properly chosen norm equivalent to the original norm in X.

In this paper we shall study the existence of strongly unique best
approximations of order 2 in the Banach space X = C(T) of all real-valued,
or complex-valued, continuous functions defined on a compact Hausdorff
space T endowed with the uniform norm. Note that if an element m is a
strongly unique best approximation (i.e., a strongly unique best
approximation of order 1) in M to an element x € X, then by (1.1) and the
triangle inequality for the norm we have

Ix = plI* = llx = m)|* = (lx = yll = lIx = ml)(llx — yll + lm —x])
>c|m—yll*.

This means that the element m is also a strongly unique best

approximation of order 2 to the element x with the same positive constant

¢ = ¢p(x). Therefore, we shall restrict our investigations of strong unicity of
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order 2 to subsets M of C(T) such that strong unicity fails for some
elements x in C(T).

It should be remarked that strong unicity of order 2 is very useful to
prove a Holder continuity of metric projections and to establish a rate of
convergence of numerical algorithms for computing best approximations.
Indeed, let E,, be the set of all elements x € X having a best approximation
m in M, ie., such that

|x — m| = dist(x, M) := in}I‘; hx—yl. {1.2)

Denote by P,, the metric projection of E,, into (M, p) defined by

P, x = {the set of all best approximations in M to x},

where (M, p) is the metric space of all nonempty closed bounded subsets of
M with the Hausdorfl metric

p(U, V) =max{sup dist(x, V), sup dist(v, U)}; U, Ve M.

ue U veV

Moreover, let SU,, be the set of all elements xe X having a strongly
unique best approximation m of order 2 in M, ie., such that

Ix—ml> < |lx — yI* = ¢ lm~ y|* (1.3)

for all ye M, where ¢=c,,(x) is a positive constant independent of y.
Clearly, we have E,,oSU,, > M.

THueoreM 1.1. If xeSU,, and Oe M, then the metric projection P,,
satisfies the local Hélder condition

p(Pryx, Pryz)<d |x—z||

for all ze E,, such that ||z| < K, where K is an arbitrary positive constant
and the constant d is equal to

d=2[(K+ lIx])/ealx) T2

Proof. Let m= Py x and ue P,,z. Then using (1.2), (1.3}, the triangle
inequality for the norm, and the fact that 0 € M we obtain

Car(x) m —ull* < [lx —ul® — fx —m|? < 2(l1x — ul + |lx — ml}) x—z|

SAK A [|x[]) [x = zll.

Taking the supremum over u of the left-hand side we finish the proof. §
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Now suppose that a numerical algorithm produces a sequence {m,} in
M such that

e = |lx—m]|* > e:= [dist(x, M)]* ask— .
Then the additional assumption that x e SU,, enables us to insert y =m,

into inequality (1.3) and get

THEOREM 1.2. The sequence {m,} converges to m=P,x and the
estimate

llrm — 1> < (e, — €)/eaa(x)

holds for all k.

2. LINEAR COMPLEX APPROXIMATION

Throughout this section we assume that M is an n-dimensional subspace
of the complex Banach space C(T'), where T is a compact Hausdorff space
which consists at least n+ 1 distinct points. By local compactness of M we
have E,;= C(T). It is well known [9, Theorem 6.2] that an element m is a
best approximation in M to xe C(T) if and only if there exist points (¢;)}
(1<k<2n+1)in the set

ext(x —m)= {teT: |x(t)—m(t)| = |x —m| }
and real positive numbers (a,)f such that 3°%_, a;=1 and

f o (x(t) —m(5)) p(1)=0  forallye M. (2.1)

Additionally, if M is a Haar subspace (i.e., if an element y e M\ {0} has at
most n—1 zeroes in T) then we have k=>n+1 [9, Theorem 6.3]. In this
case we immediately conclude that the function

k 172
|y|m:=(za,~|y(r,-)|2); yeM, 2.2)

is a norm on M. Since all norms on a finite dimensional space are
equivalent [2, Corollary 3, p. 2457, it follows that there exists a constant
¢=c(x)>0 such that

vz =clyl? (23)
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for all ye M, where M is a Haar subspace of C(T). Now we establish an
interesting theorem which is given in [10, Theorem 2.4.5]. A proof of this
theorem is presented, since it is much simpler than the original proof.
Moreover, the strong unicity constant ¢ = c¢,,(x) given below is better than
the constant obtained in [10].

THEOREM 2.1. Let m be a best approximation in a Haar subspace M of
C(T) to an element x e C(T). Then the inequality

Ix —mil> <|lx— ylI*—c Im— yll”

holds for all y e M, where the positive constant ¢ = c,{(x) is defined as in
(2.3).

Proof. Let a; and ¢, be as in (2.1). Since

e = Y122 [(x = m)(t)) + (m — y) ()1 = [|x — m|> + [(m~ y)(z,)|?
+2 Re[(x—m)(z,)(m— y)t;)]

for all j and y € M, we can multiply the obtained inequalities by a;, sum up
them over j, and use (2.1)-(2.3) and the fact that 3 ;=1 to complete the
proof. §

By this theorem and Theorem 1.1 we immediately get

CoroLLARY 2.1. Let x be a function in C(T), and let the positive
constant ¢ = c,(x) be as in (2.3). Then the metric projection P,, of C(T)
onto a Haar subspace M of C(T) satisfies the local Holder condition

1Pyx— Pzl <d Jx—z|'?

for all ze C(T) such that ||z| < K, where K is an arbitrary positive constant
and the constant d is equal to

d=2[(K+ [x|)/c]"

Further, Theorems 2.1 and 1.2 point out that any numerical algorithm
for computing best approximations in a Haar subspace M of the complex
Banach space C(7T) should minimize on M the convex functional

F(p) = I = plI? =max x(1) = »(1))’

instead of the functional g(y)={x— v|, yve M. This is very favourable,
since f(y) can be computed with smaller computational effort than g(y).



310 RYSZARD SMARZEWSKI
3. MONOTONE APPROXIMATION

For given integers 1 <k;<k,< --- <k,<n (p>1) and signs ¢;= +1
(j=1, .., p), we denote by M, the positive convex cone in the real Banach
space C[a, b], with the uniform norm |||, defined by

M,={yen, ¢y*(r)>0fora<i<band j=1, .., p}, (3.1)

where m, is the subspace of all real algebraic polynomials in C[a, b] of
degree n or less. Now, let x be a function in C[g, 6. Denote by m a best
approximation in M, to x. Such an approximation exists and is unique (see
[5,671). By a theorem of G.G. Lorentz and K. L. Zeller [S, Theorem 1]
the polynomial me M, is a best approximation in M, to the function
x € Cla, b] if and only if there exist at most n+ 2 points ¢; (i=1, ..., /) and
s, (j=1,.., p;u=1,..,r;) in [a, b] and numbers «;> 0 and f,,> 0 which
satisfy

|(x —m)(t)| = | x —m|| and  m%(s,)=0  foralli j, (3.2)
and ‘
! p i
Z a,0(t;) y(t,) + Z &; Z ﬁjyy(kj)(sju)=0 (3.3)
i=1 j=1 u=1

for all yen,, where o(z;) =sgn(x —m)(z;). In particular, by (3.3) we have
I
Z a;0(t;) y(t;)=0

i=1

for every yem,,_,. This in conjunction with the fact that n,, _, is a Haar
subspace of dimension k, implies that />k,;+1 (see [9, Theorem 6.3]).
Therefore, one can assume that

zl =1 (3.4)
i=1

Define the seminorm

i 1 P rj 1/2
ln={ T olate 45 £ 3 £ 006,02} (39)

on 7,, where

i= max [n-(n—k+ 1)1 [2/(b—a)]". (3.6)

l<j<sp
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LEMMA 3.1. There exists a constant ¢, >0 such that
B F

for all z in the set Z 1= {a(m—y): 020, ye M,}.

Proof. If there exists a polynomial z=owm—oajeZ\{0} such that
Iz},, =0, then it follows from (3.2), (3.5), and Formula (1.7) in G.G.
Lorentz and K. L. Zeller [5] that the Birkhoff interpolation problem

y(tl) - am(ti) (l: 1, weey l)’
yNs,) =0 =1 pip=1, ),
y®FU(s.)=0 (a<s,<byj=1,.,pu=1,.,71)

has two different solutions y=oam and y =gy, which is impossible by
Lemma 2.2 of R.A. Lorentz [6] or D. Schmidt [8]. Therefore, we have
lz|,,#0 for all z#0 in Z. Since the nonempty set

S(Z)={zeZ: |z| =1}
is compact, it follows that

¢, = inf |z|2,>0. 3.7

ze S(Z)
Hence we get
217, =121 12/ ||zl 17, = ¢, 2]

forallz#0in Z. |

Now we show that strong unicity of order 2 of best approximations in
M, follows easily from the theorem of G. G. Lorentz and K. L. Zeller and
Lemma 3.1.

THEOREM 3:1. Let m denote a best approximation in M, to a function
xe Cla, b]. Then there exists a constant ¢ >0 such that

lx—m|>< |x—ylI* —c |m—y* (3.8)
forall yeM,.

Proof. Let y be a polynomial in M. If |m— y|| >4 |x—m]|, then by
the triangle inequality for the norm we obtain

Ix = ylI2=lix —m)> = (Ix —mll = lm— y[)*— llx —m]|?

=llm—yll (Im =yl =2 |lx—ml) = lm— y|*.

640/56/3-6
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Otherwise, in view of Markoff’s inequality [ 1, pp. 91, 941, we have

max (m = p) X s;) <A lm— yl| <44 |lx —ml, (3.9)

where A is as in (3.6). On the other hand, if we multiply the inequalities
Ix = y? = Ix —m|? + |(m— p)(e)|> + 2(x = m)(t)(m = y)1;),  j=1,..1,

by «;, sum up them over j, and use (3.1)-(3.4) then we get

i
Ix=yI*Zlx—ml*+ 3 o, [(m—y)(£)?
i=1

1235 Bl —ml [(m— 2)®(s,,)l.
Jj=1 p=1

This in conjunction with (3.5) and (3.9) implies that
lx—ylI> = llx —m|>+m— yl2,.

Hence one can apply Lemma 3.1 to derive inequality (3.8) with the positive
constant c¢=c; defined as in (3.7). Consequently, the constant
c=min{4, ¢, } independent of the y’s is admissible in (3.8). |

Theorem 3.1 is essentially due to D. Schmidt [8] and B.L. Chalmers
and G.D. Taylor [3], who proved that, for every >0, there exists a
constant ¢ >0 such that the inequality

lx—mll < lx—yll—clm—y|?
holds for all ye M, with ||[m— y| <e. Indeed, one can show that this

inequality is equivalent to inequality (3.8). The following corollary follows
directly from Theorems 1.1 and 3.1.

CoroLLARY 3.1. Let x be a function in C[a, b], and let the positive
constant ¢ be defined as in Theorem3.1. Then the metric projection
P: Cla, b] — M, satisfies the local Holder condition

I1Px— Pz|| <d |lx~z|| '

for all ze Cl[a, b] such that |z| <K, where K is an arbitrary positive
constant and the constant d is equal to

d=2[(K+ |}x]|)/e]".

It should be noticed that this corollary was proved by D.Schmidt
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[8, Theorem 4.2] under the additional assumption deg Px > k,. Moreover,
an immediate consequence of Corollary 3.1 is the continuity of the metric
projection P at each point x e C[a, b1 with respect to the uniform topology
in C[a, b], which was proved in [8, Theorem 4.1].

4. COMPLEX APPROXIMATION WITH HERMITE INTERPOLATORY CONSTRAINTS

A detailed study of real approximation with Hermite interpolatory
constraints was done by H. L. Loeb er al. [4]. In this section we consider
approximation of this kind in the Banach space C(7) of all complex-valued
continuous functions defined on a compact subset 7' of the complex plane.
We shall assume below that T consists of at least n+ 1 distinct points. Let
n,=n,(T) denote the (n+ 1)-dimensional subspace of all complex-valued
algebraic polynomials on T of degree n or less. Moreover, let
S={sy,..,5,} be a nonempty subset of fixed points in 7T, let (n,)] be a
given sequence of positive integers with

ri=n+n,+ - +n,<n,

and let (a,), 1<v<p and 1<j<n,—1, be a given array of complex
numbers. If x is a function in C(T), then we define the convex subset M{ x ]
of C(T) by

M[x]z{yenn:y(j)(sv)=auj; lévgp’()S]snv—l},

where a,,= x(s,) for all v. Clearly, a best approximation m in M[x] to x
exists.

THEOREM 4.1.  Let m be a best approximation in M[x1 to x e C(T). Then
there exists a constant ¢ >0 such that

lx —mli> < [lx— y|*—c m— y]?
for all ye M x7.

Proof. 1t is clear that O is a best approximation in the (n+1—r)-
dimensional subspace M := M[x]—m of =, to the function x—m.
Therefore, by (2.1) there exist positive numbers o,,.., o, 3 o,=1,
1<k<2(n+1—r)+1) and points 74, ..., f, in ext(x —m) < T\S such that

Y o x—m)(t;) (y —m)(t,)=0

j=1
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for ali y e M[x]. Hence, as in the proof of Theorem 2.1, we get

Ix=ylI?=llx —ml|* + |y —ml},

for all ye M[x], where

k 1/2
|Z|m:(z a; Iz(tj)lz) ;. zeM.

i=1

Note that a polynomial y —m has at most n —r zeroes in T\S. Thus M is a
Haar subspace on T\S of dimension #n + 1 — r. This in conjunction with the
fact that #;e T\S enables us to apply Theorem 6.3 from [9] in order to
show that k =n + 2 —r. Consequently, the seminorm |-|,, is a norm on M.
Hence there exists a constant ¢ >0 such that |z|2 > ¢ ||z|* for all z=y—m
in M, which completes the proof. |

Finally, Theorems 1.1 and 4.1 yield

COROLLARY 4.1. Let x be a function in C(T), and let ¢ >0 be defined as
in Theorem 4.1. Then the metric projection P: C(T)— M([x] satisfies the
local Hélder condition

p(Px, Pz)<d ||x —z||'/?

Jor all ze C(T) such that ||z|| < K, where K is an arbitrary positive constant
and the constant d is defined as in Corollary 3.1.

The Hausdorff metric p(Px, Pz) in the corollary can be replaced by
| Px — Pz|| only if Pz is a one-clement set. In particular, by Theorem 4.1
this is possible when M[x]=M[z], i, when x(s;)=2z(s,) for i=1, .., p.
In general this is false even in the case of approximation by real algebraic
polynomials with Lagrange interpolatory constraints. For example, let
x(t)y=t] (—1<1<1), and let M[x] <= C[—1, 1] be defined by

M[x]={yen;: y(0)=x(0)}.

Then we have Pz= {ar: —1<a<1} for z(t)=1—|1].
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